建议阅读的文献列表


阅读列表

中文论文阅读列表

期刊论文


  • 基于格的无证书盲签名方案_张小萍
  • 标准模型下基于格的身份代理部分盲签名方案_周艺华
  • 电子投票协议下的基于格的可链接门限环签名_庄立爽
  • 格上基于身份的可链接环签名_汤永利
  • 格上高效的完全动态群签名方案_叶青
  • 格上高效的环签名方案_赵宗渠
  • 格上本地验证者撤销属性基群签名的零知识证明_张彦华
  • 后量子安全的群签名和环签名_冯翰文
  • 标准模型下前向安全的格基有序聚合签名_谢佳

博士论文


  • 格上无陷门的数字签名研究_陈江山(导师胡玉濮)
  • 基于格理论的公钥密码体制研究与设计_殷伟(导师温巧燕)
  • 格基数字签名方案的设计与分析_张平原(导师黄劲松,徐秋亮)
  • 基于格的指定验证者数字签名方案及身份鉴别协议研究_蔡杰(导师吕广世,徐秋亮)

硕士论文


  • 基于格的高效环签名方案研究_赵功明(导师田苗苗)
  • 格上的盲签名及其在区块链中的应用_王琪(导师陆正福)
  • 可链接环签名方案的研究_孙晗(导师曹素珍)

中文论文下载请点击下载链接

英文论文阅读列表

CRYPTO


  • Hauck E., Kiltz E., Loss J., Nguyen N.K. (2020) Lattice-Based Blind Signatures, Revisited. In: Micciancio D., Ristenpart T. (eds) Advances in Cryptology – CRYPTO 2020. CRYPTO 2020. Lecture Notes in Computer Science, vol 12171. Springer, Cham. https://doi.org/10.1007/978-3-030-56880-1_18
  • Park S., Sealfon A. (2019) It Wasn’t Me!. In: Boldyreva A., Micciancio D. (eds) Advances in Cryptology – CRYPTO 2019. CRYPTO 2019. Lecture Notes in Computer Science, vol 11694. Springer, Cham.https://doi.org/10.1007/978-3-030-26954-8_6
  • Lyubashevsky V., Nguyen N.K., Seiler G. (2021) SMILE: Set Membership from Ideal Lattices with Applications to Ring Signatures and Confidential Transactions. In: Malkin T., Peikert C. (eds) Advances in Cryptology – CRYPTO 2021. CRYPTO 2021. Lecture Notes in Computer Science, vol 12826. Springer, Cham.https://doi.org/10.1007/978-3-030-84245-1_21

EUROCRYPT


  • 1.Katsumata S., Nishimaki R., Yamada S., Yamakawa T. (2021) Round-Optimal Blind Signatures in the Plain Model from Classical and Quantum Standard Assumptions. In: Canteaut A., Standaert FX. (eds) Advances in Cryptology – EUROCRYPT 2021. EUROCRYPT 2021. Lecture Notes in Computer Science, vol 12696. Springer, Cham.https://doi.org/10.1007/978-3-030-77870-5_15
  • 2.Beullens W. (2020) Sigma Protocols for MQ, PKP and SIS, and Fishy Signature Schemes. In: Canteaut A., Ishai Y. (eds) Advances in Cryptology – EUROCRYPT 2020. EUROCRYPT 2020. Lecture Notes in Computer Science, vol 12107. Springer, Cham.https://doi.org/10.1007/978-3-030-45727-3_7
  • 3.De Feo L., Galbraith S.D. (2019) SeaSign: Compact Isogeny Signatures from Class Group Actions. In: Ishai Y., Rijmen V. (eds) Advances in Cryptology – EUROCRYPT 2019. EUROCRYPT 2019. Lecture Notes in Computer Science, vol 11478. Springer, Cham.https://doi.org/10.1007/978-3-030-17659-4_26
  • 4.Aragon N., Blazy O., Gaborit P., Hauteville A., Zémor G. (2019) Durandal: A Rank Metric Based Signature Scheme. In: Ishai Y., Rijmen V. (eds) Advances in Cryptology – EUROCRYPT 2019. EUROCRYPT 2019. Lecture Notes in Computer Science, vol 11478. Springer, Cham.https://doi.org/10.1007/978-3-030-17659-4_25
  • 5.Katsumata S., Yamada S. (2019) Group Signatures Without NIZK: From Lattices in the Standard Model. In: Ishai Y., Rijmen V. (eds) Advances in Cryptology – EUROCRYPT 2019. EUROCRYPT 2019. Lecture Notes in Computer Science, vol 11478. Springer, Cham.https://doi.org/10.1007/978-3-030-17659-4_11

ASIACRYPT


  • Beullens W., Katsumata S., Pintore F. (2020) Calamari and Falafl: Logarithmic (Linkable) Ring Signatures from Isogenies and Lattices. In: Moriai S., Wang H. (eds) Advances in Cryptology – ASIACRYPT 2020. ASIACRYPT 2020. Lecture Notes in Computer Science, vol 12492. Springer, Cham.https://doi.org/10.1007/978-3-030-64834-3_16

PKC


  • 1.Hashimoto K., Katsumata S., Kwiatkowski K., Prest T. (2021) An Efficient and Generic Construction for Signal’s Handshake (X3DH): Post-Quantum, State Leakage Secure, and Deniable. In: Garay J.A. (eds) Public-Key Cryptography – PKC 2021. PKC 2021. Lecture Notes in Computer Science, vol 12711. Springer, Cham.:https://doi.org/10.1007/978-3-030-75248-4_15
  • 2.Diemert D., Gellert K., Jager T., Lyu L. (2021) More Efficient Digital Signatures with Tight Multi-user Security. In: Garay J.A. (eds) Public-Key Cryptography – PKC 2021. PKC 2021. Lecture Notes in Computer Science, vol 12711. Springer, Cham.https://doi.org/10.1007/978-3-030-75248-4_1
  • 3.Zhang J., Yu Y., Fan S., Zhang Z., Yang K. (2020) Tweaking the Asymmetry of Asymmetric-Key Cryptography on Lattices: KEMs and Signatures of Smaller Sizes. In: Kiayias A., Kohlweiss M., Wallden P., Zikas V. (eds) Public-Key Cryptography – PKC 2020. PKC 2020. Lecture Notes in Computer Science, vol 12111. Springer, Cham.https://doi.org/10.1007/978-3-030-45388-6_2
  • 4.Haque A., Scafuro A. (2020) Threshold Ring Signatures: New Definitions and Post-quantum Security. In: Kiayias A., Kohlweiss M., Wallden P., Zikas V. (eds) Public-Key Cryptography – PKC 2020. PKC 2020. Lecture Notes in Computer Science, vol 12111. Springer, Cham.https://doi.org/10.1007/978-3-030-45388-6_15
  • 5.Ling S., Nguyen K., Wang H., Xu Y. (2018) Constant-Size Group Signatures from Lattices. In: Abdalla M., Dahab R. (eds) Public-Key Cryptography – PKC 2018. PKC 2018. Lecture Notes in Computer Science, vol 10770. Springer, Cham.https://doi.org/10.1007/978-3-319-76581-5_3

CT-RSA


  • 1.Chalkias K., Garillot F., Kondi Y., Nikolaenko V. (2021) Non-interactive Half-Aggregation of EdDSA and Variants of Schnorr Signatures. In: Paterson K.G. (eds) Topics in Cryptology – CT-RSA 2021. CT-RSA 2021. Lecture Notes in Computer Science, vol 12704. Springer, Cham.https://doi.org/10.1007/978-3-030-75539-3_24
  • 2.Feng H., Liu J., Wu Q., Li YN. (2020) Traceable Ring Signatures with Post-quantum Security. In: Jarecki S. (eds) Topics in Cryptology – CT-RSA 2020. CT-RSA 2020. Lecture Notes in Computer Science, vol 12006. Springer, Cham.https://doi.org/10.1007/978-3-030-40186-3_19

ACISP


  • 1.Le H.Q. et al. (2020) Lattice Blind Signatures with Forward Security. In: Liu J., Cui H. (eds) Information Security and Privacy. ACISP 2020. Lecture Notes in Computer Science, vol 12248. Springer, Cham.https://doi.org/10.1007/978-3-030-55304-3_1
  • 2.Gong B., Cheng L., Zhao Y. (2020) SKCN: Practical and Flexible Digital Signature from Module Lattice. In: Liu J., Cui H. (eds) Information Security and Privacy. ACISP 2020. Lecture Notes in Computer Science, vol 12248. Springer, Cham.https://doi.org/10.1007/978-3-030-55304-3_4

Dilithium


  • Ducas, L., Kiltz, E., Lepoint, T., Lyubashevsky, V., Schwabe, P., Seiler, G., & Stehlé, D. (2018). CRYSTALS-Dilithium: A Lattice-Based Digital Signature Scheme. IACR Transactions on Cryptographic Hardware and Embedded Systems, 2018(1), 238-268.https://doi.org/10.13154/tches.v2018.i1.238-268

Blind Signature References


  • 1.Pointcheval, D., Stern, J. Security Arguments for Digital Signatures and Blind Signatures . J. Cryptology 13, 361–396 (2000).https://doi.org/10.1007/s001450010003
  • 2.H. Q. Le, W. Susilo, T. X. Khuc, M. K. Bui and D. H. Duong, “A Blind Signature from Module Latices,” 2019 IEEE Conference on Dependable and Secure Computing (DSC), 2019, pp. 1-8
    doi:10.1109/DSC47296.2019.8937613.
  • 3.Juels A., Luby M., Ostrovsky R. (1997) Security of blind digital signatures. In: Kaliski B.S. (eds) Advances in Cryptology — CRYPTO ‘97. CRYPTO 1997. Lecture Notes in Computer Science, vol 1294. Springer, Berlin, Heidelberg.https://doi.org/10.1007/BFb0052233
  • 4.Rückert M. (2010) Lattice-Based Blind Signatures. In: Abe M. (eds) Advances in Cryptology - ASIACRYPT 2010. ASIACRYPT 2010. Lecture Notes in Computer Science, vol 6477. Springer, Berlin, Heidelberg.https://doi.org/10.1007/978-3-642-17373-8_24
  • 5.Miklós Ajtai, Ravi Kumar, and D. Sivakumar. 2001. A sieve algorithm for the shortest lattice vector problem. In Proceedings of the thirty-third annual ACM symposium on Theory of computing (STOC ‘01). Association for Computing Machinery, New York, NY, USA, 601–610. doi:https://doi.org/10.1145/380752.380857
  • 6.Jin Z, Zhao Y. Optimal key consensus in presence of noise[J].arXiv preprint arXiv:1611.06150, 2016.
  • 7.Peikert C., Rosen A. (2006) Efficient Collision-Resistant Hashing from Worst-Case Assumptions on Cyclic Lattices. In: Halevi S., Rabin T. (eds) Theory of Cryptography. TCC 2006. Lecture Notes in Computer Science, vol 3876. Springer, Berlin, Heidelberg.https://doi.org/10.1007/11681878_8
  • 8.Lyubashevsky V., Peikert C., Regev O. (2010) On Ideal Lattices and Learning with Errors over Rings. In: Gilbert H. (eds) Advances in Cryptology – EUROCRYPT 2010. EUROCRYPT 2010. Lecture Notes in Computer Science, vol 6110. Springer, Berlin, Heidelberg.https://doi.org/10.1007/978-3-642-13190-5_1
  • 9.Langlois, A., Stehlé, D. Worst-case to average-case reductions for module lattices. Des. Codes Cryptogr. 75, 565–599 (2015).https://doi.org/10.1007/s10623-014-9938-4

英文论文下载请点击下载链接


文章作者: milk
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 milk !
  目录